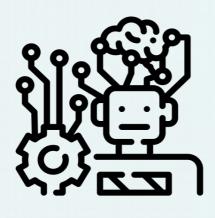
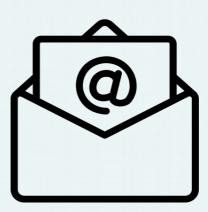
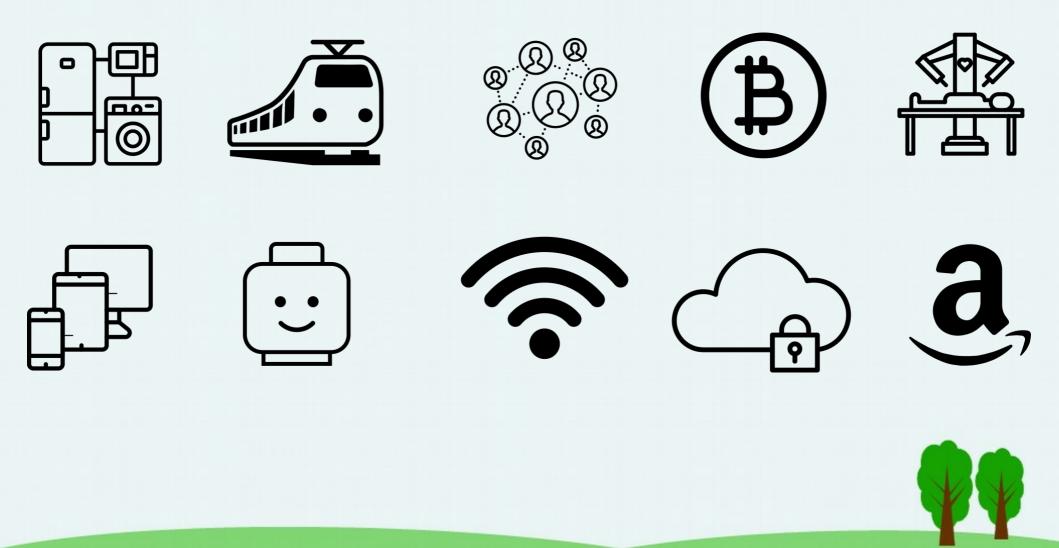

Sustainable Computing Science


Gözel Shakeri, Carl von Ossietzy University Oldenburg

Carbon Footprint ... ?



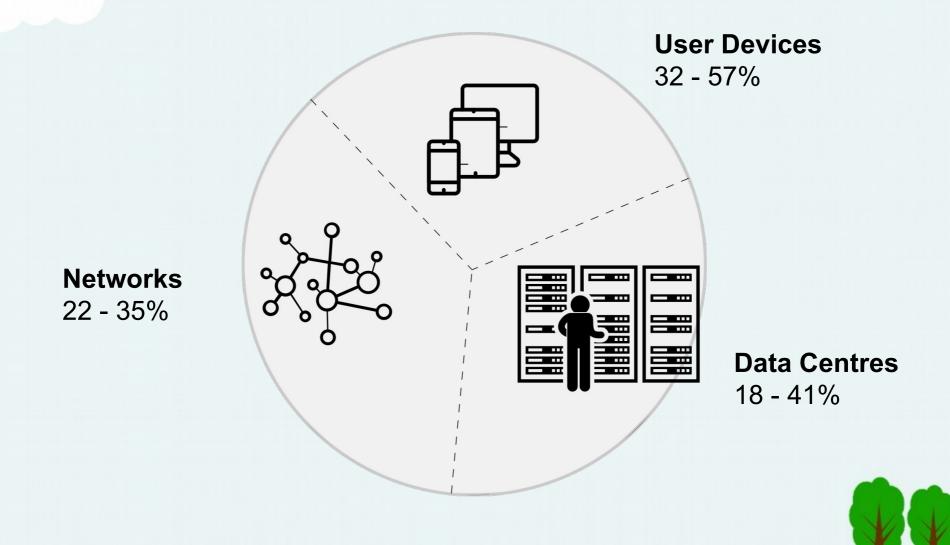
Carbon Footprint ... ?



Computing is Ubiquitous

[1] Gupta et al., 2019, Chasing Carbon: The Elusive Environmental Footprint of Computing

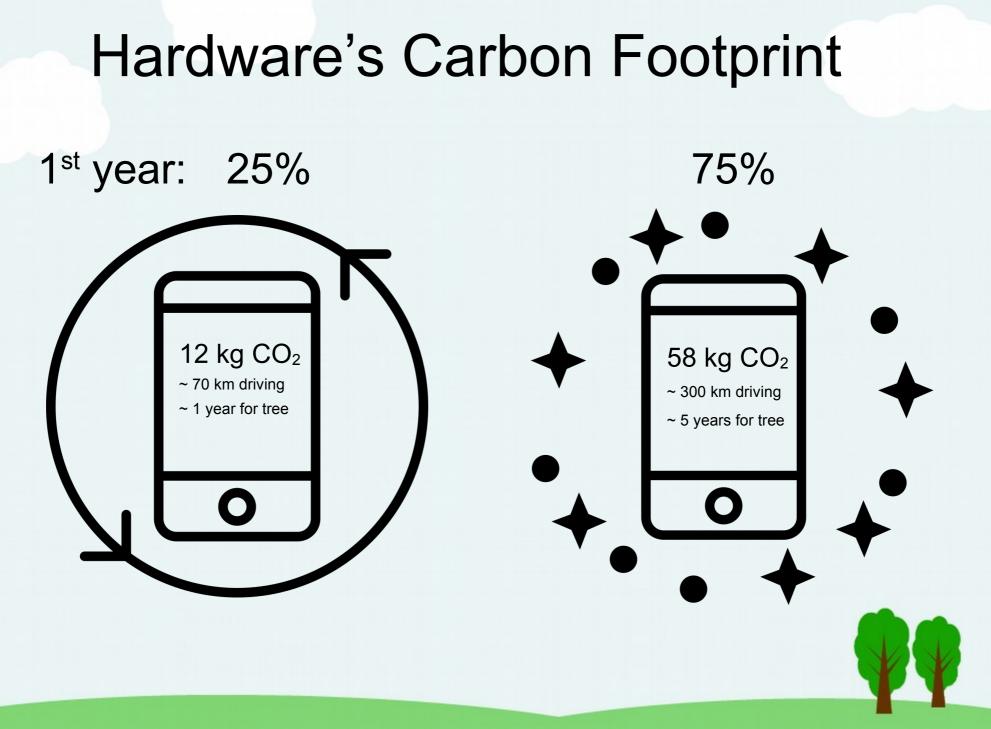
Information & Communication Technology's (ICT) impact



- Global Energy Consumption [1]:
 - Today: 5%
- 2030: 7%
- Global Greenhouse Gas (GHG) emissions [2]:
 - 2-4%
 - aviation: 2%

• [1] Gupta et al., 2019, Chasing Carbon: The Elusive Environmental Footprint of Computing; [2] Freitag et al. 2021, The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations.

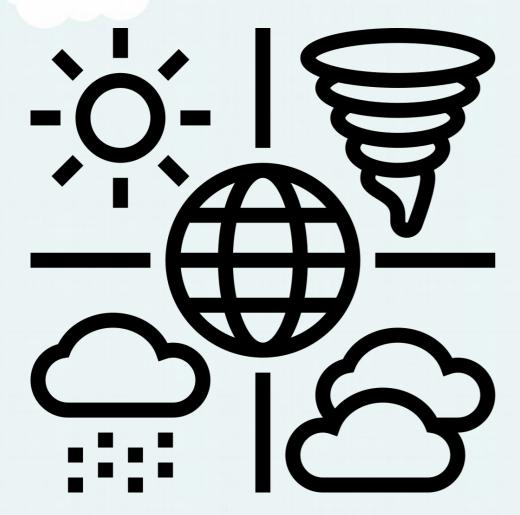
ICT's Carbon Footprint



[1] Freitag et al., 2021, The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations; [2] Lannelongue et al., 2021, Green Algorithms: Quantifying the Carbon Footprint of Computation; [3] Gupta et al., 2019, Chasing Carbon: The Elusive Environmental Footprint of Computing.

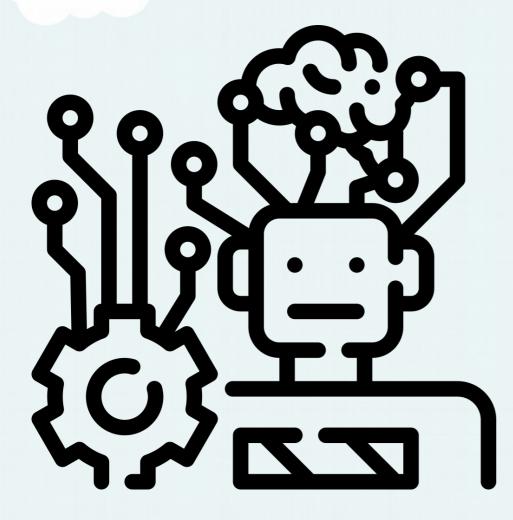
Hardware's Carbon Footprint

One-time Operations Recurring Operations


[1] Lannelongue et al., 2021, Green Algorithms: Quantifying the Carbon Footprint of Computation; [2] Gupta et al., 2019, Chasing Carbon: The Elusive Environmental Footprint of Computing.

[1] Mike Berners-Lee, 2020, How Bad are Bananas? The Carbon Footprint of Everything, ISBN: 9781788163811

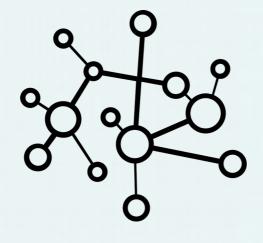
Software's Carbon Footprint

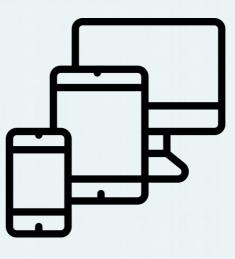


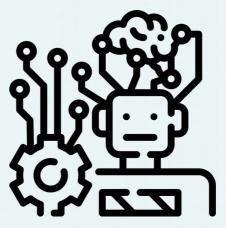
- Weather Forecast:
- ICOsahedral Non-hydrostatic (ICON)
- 2.5 tonnes of CO_2 / day
- eq. to 13 215 km driving
- eq. to $4 \times NY \leftrightarrow SF$ flights
- eq. to 227 new iPhone 12 / day
- eq. to 210 years of 1 tree

[1] Lannelongue et al., 2021, Green Algorithms: Quantifying the Carbon Footprint of Computation

Software's Carbon Footprint



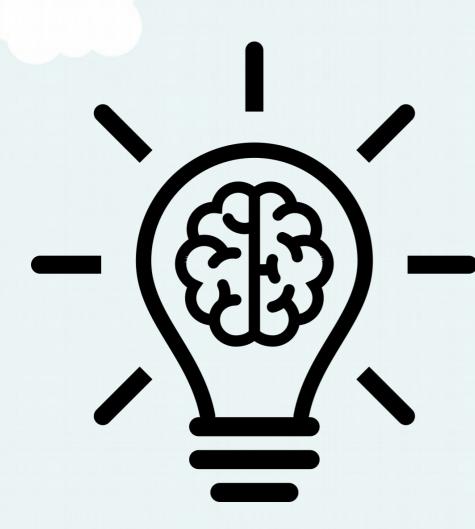

- Natural Language Processing:
 - Google's chatbot Meena
 - 164 tonnes of CO₂
 - eq. to 71 x NY \leftrightarrow Melbourne flights
 - eq. to 500 new iPhone 12 / day
 - eq. to 1500 years of 1 tree


[1] Lannelongue et al., 2021, Green Algorithms: Quantifying the Carbon Footprint of Computation

To Recap - Again

J'accuse! It's all Evil Corp's doing!

Optimise Everything!



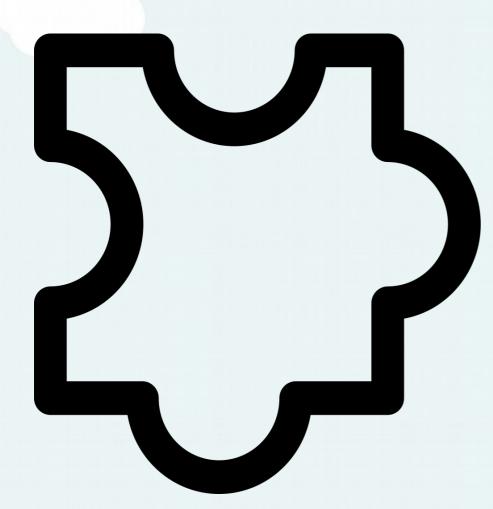
- Algorithms
- Hardware
- Education
- Policies
- Understanding the link of research and impact on environmental and social justice

[1] Gupta et al., 2021, Chasing Carbon: The Elusive Environmental Footprint of Computing; [2] Lannelonge et al., 2021, Green Algorithms: Quantifying the Carbon Footprint of Computation; [3] Gomes et al., 2019, Computational sustainability: computing for a better world and a sustainable future; [4] Freitag et al., 2021, The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations; [5] Gormally et al., 2019, 'Doing good science': The impact of invisible energy policies on laboratory energy demand in higher education; [6] Bates et al., 2018, Championing Environmental and Social Justice;

Reimagine Everything!

- Food System (30% GHG)
- Fast Fashion (10% GHG)
- Renewable Energy
- Transportation System
- Digitalisation
- Education
- City planning
- Waste (e.g. food waste 8% GHG)
- Agriculture
- Etc

My Research



- Food System (30% GHG)
- Dietary change can reduced by 50%
- 15% of Europe shops food online
- \rightarrow 2.5% global GHG emissions reduction

[1] Shakeri et al., 2021, Envirofy your Shop: Development of a Real-time Tool to Support Eco-friendly Food Purchases Online

My Research

Envirofy: the first eco-friendly ecommerce grocery tool which supports real shoppers in making sustainable choices.

Initial results: Behaviour Change Techniques can reduce a shop's total carbon footprint by 15%!

Website: https://envirofy.eu

[1] Shakeri et al., 2021, Envirofy your Shop: Development of a Real-time Tool to Support Eco-friendly Food Purchases Online

Sustainability Research

HCI

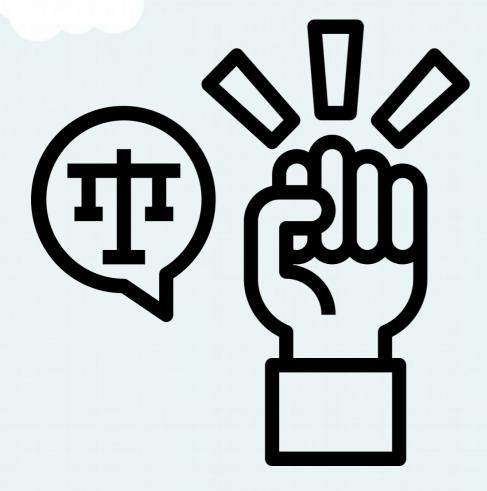
- Behaviour-intention gap when food shopping [7]
- Digital streaming services e.g. Youtube [3]
- Being "uncomfortable" for the environment [4]
- Eco-feedback [10]
- Etc.

Out There

- Low power-consuming processors, that generate less heat, hence require less cooling [1]
- Agrivoltaic [2]
- Optimising parcel deliveries [5]
- NVIDIA's Maxine [6]
- Reduction of Bing query search space [8]
- Compiler Optimisation [9]
- Energy-Aware Software [11]
- Etc.

[1] <u>https://www.bamboosystems.io/architecture/;</u> [2] Dinesh et al., 2021, The potential of agrivoltaic systems; [3] Preist et al., 2019, Evaluating Sustainable Interaction Design of Digital Services: The Case of Youtube; [4] Tyler et al., 2019, Are you sitting uncomfortably? A tale of comfort, energy and productivity; [5] Ngyuen et al., 2019, Optimising Parcel Deliveries in London using dual mode routing; [6] <u>https://developer.nvidia.com/maxine#nvidia-maxine;</u> [7] Shakeri et al., 2021, Envirofy your Shop: Development of a Real-time Tool to Support Eco-friendly Food Purchases Online; [8] Tonellotto et al., 2018, Efficient query processing for scalable web search; [9] Koehler et al., 2021, Sketch-Guided Equality Saturation: Scaling Equality Saturation to Complex Optimizations in Languages with Bindings; [10] Sanguinetti et al., 2018, Information, timing, and display: A design-behavior framework for improving the effectiveness of eco-feedback; [11] Fonseca et al., A Manifesto for Energy-Aware Software;

Sustainable CS for Social Justice

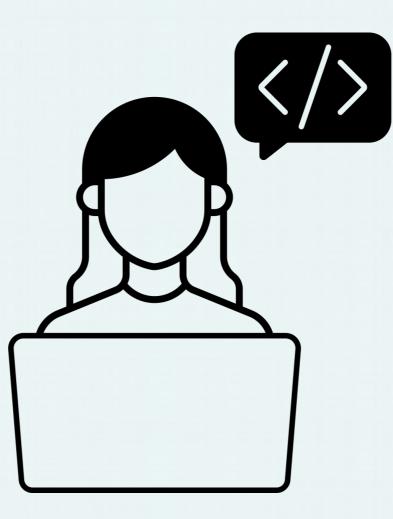

Changing Concepts of Sustainability:

- Ecological
- Economic
- Social

[1] Osburg, 2017, Sustainability in a Digital World Needs Trust; [2] Solomonian et al., 2021, The critical intersection of environmental and social justice: a commentary; [3] https://www.cfr.org/blog/why-cobalt-mining-drc-needs-urgent-attention, accessed 27/10/2021

Call to Action

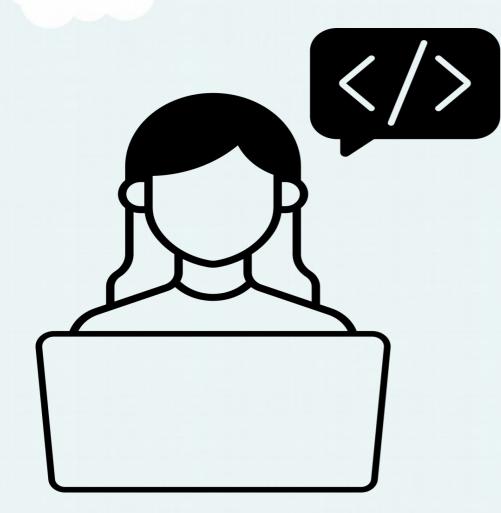
"Should every paper contain a paragraph commenting on how the outcomes of the research might affect environmental and social justice?" [1]



[1] Bates et al., 2018, Championing Environmental and Social Justice: Embracing, Embedding, and Promoting Broader Notions of Sustainability in HCI; [2] Solomonian et al., 2021, The critical intersection of environmental and social justice: a commentary; [3] https://www.cfr.org/blog/why-cobalt-mining-drc-needs-urgent-attention, accessed 27/10/2021

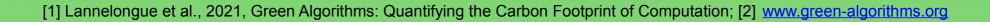
Sustainable Computing Scientist

Dr Gözel's Footprint?


CO₂ in Context

- 1 kg of $CO_2 \sim 1$ tree month
- 1 kg of $CO_2 \sim 8.3$ km car
- 1 kg of CO₂ ~ 6 miles car

100 kg of $CO_2 \sim 9$ tree years (109 months) 100 kg of $CO_2 \sim 833$ km car 100 kg of $CO_2 \sim 520$ miles car



Working

• Dr Gözel:

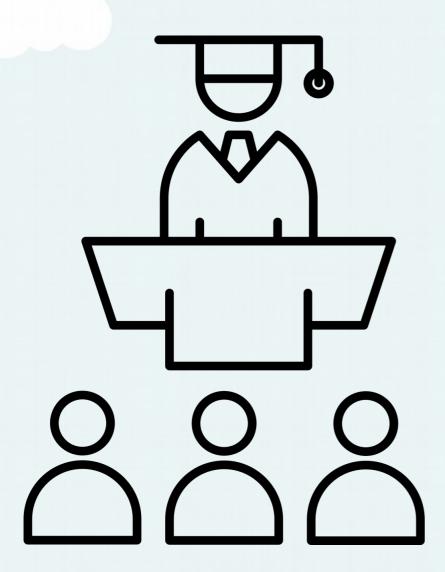
- 1 year: 47 kg of CO₂e [2]
- eq. to 268 km driving
- eq. to 1 flight London \rightarrow Paris
- Not including:
 - Monitor
 - Browsing / querying the internet
- Communication (email, slack, teams)
- Video conferencing
- Cloud storage
- etc

Emails

- 1 email: 4 gr CO₂e [1]
- 1 email + attachment: 50 gr CO₂e
- 50% of email traffic is spam
- 1 week:
 - Received: 21 / day + 1.2 attachment / day
 - Sent: 3.6 / day + 0.8 attachment / day
- * \rightarrow 103.6 kg CO₂e / year
 - eq. to 115 tree months (9.5 years)
 - eq. to 850 km car
- * \rightarrow 1.5 kg CO₂e "thank you" / year
 - eq. to 1.5 tree months
 - eq. to 12.5 km car
 - \rightarrow ~ 4 billion active email users

[1] Mike Berners-Lee, 2020, How Bad are Bananas? The Carbon Footprint of Everything, ISBN: 9781788163811

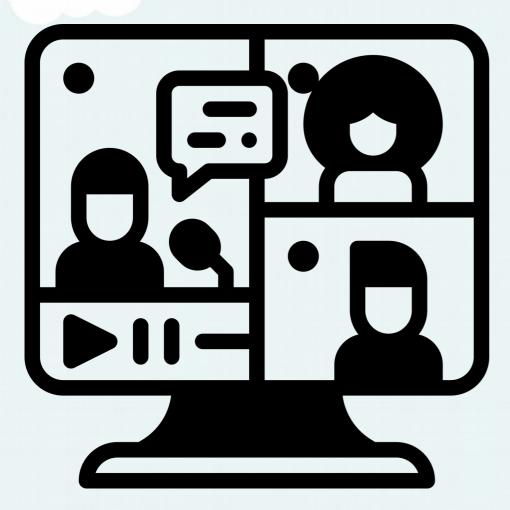
Browsing / Querying



- · Search web address: 0.8 gr CO₂
- · Search web: 10 gr CO2
- 1 week:
 - 990 web queries \rightarrow 10 kg per
 - · 440 kg / year
 - eq. to 440 tree months (36 years)
 - eq. to 3665 km car
- Not including:
 - · Phone
 - Tablet

[1] https://www.energuide.be/en/questions-answers/do-i-emit-co2-when-i-surf-the-internet/69/, accessed 30/10/2021

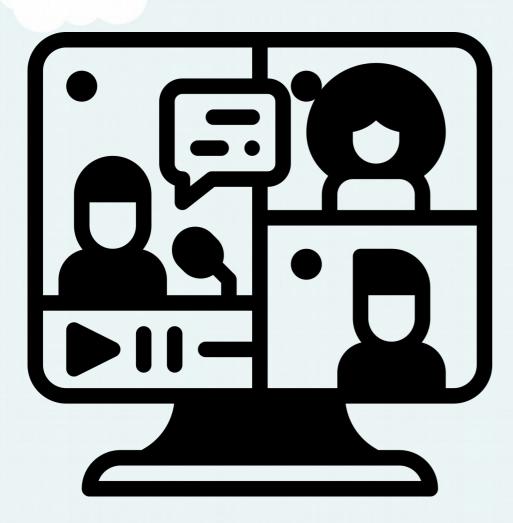
Academic Conferences



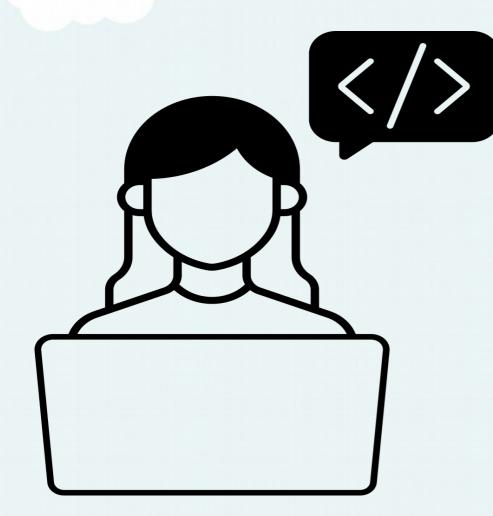
- There and back [1]:
 - ~3 tonnes of CO₂e / attendee
 - eq. to 3000 tree months (250 years)
 - eq. to 24990 km car
- ¹/₄ of attendees opt virtual [1]:
 - 67 71% less CO₂e

[1] Jäckle, 2020, Reducing the Carbon Footprint of Academic Conferences by Online Participation: The Case of the 2020 Virtual European Consortium for Political Research General Conference

Online Conferences



- Allow for:
- Integration of academics from the Global South
- Integration of young academics without sufficient funds
- Increased gender diversity as people (mainly women) with (child) caring responsibilities
- Smaller Universities to host conferences


[1] Jäckle, 2020, Reducing the Carbon Footprint of Academic Conferences by Online Participation: The Case of the 2020 Virtual European Consortium for Political Research General Conference

Video Conferencing Tools

- Weekly:
 - 3-persons: 3.4kg of CO₂e
 - eq. to 3.5 tree months
 - eq. to 29 km car
 - 10-persons: 11.3 kg of CO₂e
 - eq. to 12 tree months
 - eq. to 94 km car
- Annually:
 - ≥ 646.8 kg of CO₂e
 - eq. to 650 tree months (54 years)
 - eq. to 5368 km car

Dr Gözel's Footprint!

Laptop: 47 kg CO₂e Emails: 103.6 kg CO₂e Browsing: 440 kg CO₂e Academic Conferences: 3000 kg CO₂e Online Meetings: 650 kg CO₂e **Total: 4240.6 kg CO₂e**

- 4622 tree months (385 years)
- ⁻ 35,324 car km

Many Thanks

The carbon footprint of making this presentation*:

718 gr CO₂e

eq. to 4.11 km driving

eq. to 3 weeks for 1 tree

Gözel Shakeri, University of Oldenburg, goezel.shakeri@uni-oldenburg.de My research: <u>https://envirofy.eu</u>

* Carbon Footprint Calculator: http://green-algorithms.org

Icons: <u>https://thenounproject.com</u>

